A Novel Self-Routing Address Scheme for All-Optical Packet-Switched Networks With Arbitrary Topologies

نویسندگان

  • X. C. Yuan
  • V. O. K. Li
چکیده

Pure all-optical packet-switched networks in which both header processing and packet routing are carried out in the optical domain overcome the bandwidth bottlenecks of optoelectronic conversions and therefore are expected to meet the needs of next generation high speed networks. Due to the limited capabilities of available optical logic devices, realizations of pure all-optical packet-switched networks in the near future will likely employ routing schemes that minimize the complexity of routing control. In this paper, we propose a novel self-routing scheme that identifies the output ports of the nodes in a network instead of the nodes themselves. The proposed address scheme requires single bit processing only and is applicable to small to medium size pure all-optical packet-switched networks with arbitrary topologies. Unlike traditional self-routing schemes, multiple paths between two nodes can be defined. Hierarchical address structure can be used in the proposed routing scheme to shorten the address.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel self-routing scheme for all-optical packet switched networks with arbitrary topology

Due to limited available photonic devices, optical networks in the near future will likely employ routing schemes that do not require sophisticated processing of optical packets. In this paper, we propose a novel self-routing scheme for all-optical packet networks that can be applied to networks with arbitrary topology. The proposed routing scheme requires only single bit processing and can be ...

متن کامل

Deflection routing in slotted self-routing networks with arbitrary topology - Communications, 2002. ICC 2002. IEEE International Conference on

A deflection routing algorithm that can be applied to a novel self-routing address scheme for networks with arbitrary topology is proposed. The proposed deflection routing algorithm can be implemented all-optically using bitwise optical logic gates. Besides the primary output link selection, alternate output link choices by a packet at each node in case of deflection are also encoded in the add...

متن کامل

Komolafe, O. and Harle, D.A. and Cotter, D. (2001) Optical packet switching over arbitrary physical topologies using the Manhattan street network: an evolutionary approach. In: Proceedings of the 2001 IFIP Conference on Optical Network Design and Modelling

Optical packet switching over arbitrary physical topologies typically mandates complex routing schemes and the use of buffers to resolve the likely contentions. However, the relatively immature nature of optical logic devices and the limitations with optical buffering provide significant incentive to reduce the routing complexity and avoid optical domain contentions. This paper examines how the...

متن کامل

Optical Packet Switching over Arbitrary Physical Topologies using the Manhattan Street Network: An Evolutionary Approach

Optical packet switching over arbitrary physical topologies typically mandates complex routing schemes and the use of buffers to resolve the likely contentions. However, the relatively immature nature of optical logic devices and the limitations with optical buffering provide significant incentive to reduce the routing complexity and avoid optical domain contentions. This paper examines how the...

متن کامل

High-speed All- Optical Time Division Multiplexed Node

In future high-speed self-routing photonic networks based on all-optical time division multiplexing (OTDM) it is highly desirable to carry out packet switching, clock recovery and demultplexing in the optical domain in order to avoid the bottleneck due to the optoelectronics conversion. In this paper we propose a self-routing OTDM node structure composed of an all-optical router and demultiplex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001